Early stopping is a widely-used regularization technique to avoid overfitting in iterative algorithms. In particular, Split Linearized Bregman Iteration methods are often equipped with an early stopping rule to achieve model selection consistency to recover the structural sparsity of parameters. However, theoretical early stopping rule with model selection consistency requires the incoherence condition, which is unknown in applications. In this work, we propose a data adaptive early stopping rule towards the False Discovery Rate (FDR) control under the framework of Knockoff methods. An inflated FDR is proved under a relaxation of the exchangeability condition in traditional Knockoff methods. The effectiveness of the proposed method is demonstrated by both simulations and two real world application examples, Alzheimer’s Disease (AD) and partial order ranking of basketball teams.

2 May 2022
11am - 12pm
Where
https://hkust.zoom.us/j/94401529969 (Passcode: hkust)
Speakers/Performers
Miss Wenqi ZENG
HKUST
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
21 Jun 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Alzheimer’s Disease is Likely a Lipid-disorder Complication: an Example of Functional Lipidomics for Biomedical and Biological Research
Abstract Functional lipidomics is a frontier in lipidomics research, which identifies changes of cellular lipidomes in disease by lipidomics, uncovers the molecular mechanism(s) leading to the chan...
24 May 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Confinement Controlled Electrochemistry: Nanopore beyond Sequencing
Abstract Nanopore electrochemistry refers to the promising measurement science based on elaborate pore structures, which offers a well-defined geometric confined space to adopt and characterize sin...