Understanding the role of diet in shaping the ecology and evolution of species is a steadfast pursuit. Yet, resolving the relative importance of dietary sources in an organisms’ energy and growth budgets is particularly difficult within nutritional symbioses – such as those ubiquitous amongst shallow marine invertebrates (corals, bivalves, jellyfish, sponges) and their microbial symbionts. Increasingly, stable isotope approaches are employed to resolve diet – often as an alternative to exhaustive and potentially misleading examinations of ingestion (e.g. particle removal, substrate depletion, etc.). Here, I will share results from a novel application of Stable Isotope Bayesian Ellipses in R (SIBER) to symbiotic partnerships – from reef building corals, to giant clams. Heterotrophy – as evidenced by little overlap in host and symbiont isotopic niche areas correlates well with large polyp size (corals) and slower growth rates (clams) – whereas autotrophy is linked to an elevated conservation status. Other factors, such as seasonal variation in trophic plasticity, fatty acid and amino acid compound-specific isotope analysis, and how all of this can inform effective management and restoration action will be discussed.

28 Apr 2023
3:30pm - 4:30pm
Where
4472 (lift 25-26)
Speakers/Performers
David Baker
Hong Kong University
Organizer(S)
Department of Ocean Science
Contact/Enquiries

Please contact Alex Wyatt (wyatt@ust.hk)

Payment Details
Audience
Language(s)
English
Other Events
21 Jun 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Alzheimer’s Disease is Likely a Lipid-disorder Complication: an Example of Functional Lipidomics for Biomedical and Biological Research
Abstract Functional lipidomics is a frontier in lipidomics research, which identifies changes of cellular lipidomes in disease by lipidomics, uncovers the molecular mechanism(s) leading to the chan...
24 May 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Confinement Controlled Electrochemistry: Nanopore beyond Sequencing
Abstract Nanopore electrochemistry refers to the promising measurement science based on elaborate pore structures, which offers a well-defined geometric confined space to adopt and characterize sin...