With the two-stage fourth-order temporal evolution of the gas distribution function and Weighted Essentially Non-Oscillatory (WENO) reconstruction, a high-order finite difference gas-kinetic scheme is proposed. Different from the previous high-order finite volume gas-kinetic methods, which uses the discontinuous initial reconstruction at the cell interface, the present scheme is the conservative finite difference method with a continuous flow distribution at the grid point. And the numerical fluxes are obtained by the kinetic splitting method, instead of the traditional flux splitting based on the approximate Riemann solver. Many numerical tests in solving one and two-dimensional Euler and Navier-Stokes equations demonstrate the current scheme is highly stable, accurate, and efficient, capturing discontinuities without oscillations.

5月3日
10:30am - 11:30am
地点
https://hkust.zoom.us/j/93466631320 (Passcode: hkust)
讲者/表演者
Miss Qing XIE
主办单位
Department of Mathematics
联系方法
付款详情
对象
Alumni, Faculty and staff, PG students
语言
英语
其他活动
6月21日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Alzheimer’s Disease is Likely a Lipid-disorder Complication: an Example of Functional Lipidomics for Biomedical and Biological Research
Abstract Functional lipidomics is a frontier in lipidomics research, which identifies changes of cellular lipidomes in disease by lipidomics, uncovers the molecular mechanism(s) leading to the chan...
5月24日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Confinement Controlled Electrochemistry: Nanopore beyond Sequencing
Abstract Nanopore electrochemistry refers to the promising measurement science based on elaborate pore structures, which offers a well-defined geometric confined space to adopt and characterize sin...